skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Ravishankar, S"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2026
  2. Babski-Reeves, K; Eksioglu, B; Hampton, D (Ed.)
    Ecosystem conservation is fundamental to guarantee the survival of endangered species and to preserve other ecological functions important for human systems (e.g., water). Planning land conservation increasingly requires a landscape approach to mitigate the negative impacts of spatial threats such as urbanization, agricultural development, and climate change. In this context, landscape connectivity and compactness are vital characteristics for the effective functionality of conservation areas. Connectivity allows species to travel across landscapes, facilitating the flow of genes across populations from different protected areas. Compactness measures the spatial dispersion of protected sites, which can be used to mitigate risk factors associated with species leaving and reentering the reserve. This research describes an optimization model for the design of conservation areas, while inducing connectivity and compactness. We use the Reocks index, a metric of compactness that maximizes the ratio of area of the selected patches to the area of their smallest circumscribing circle. Our model includes budget and minimum protected area constraints to reflect realistic financial and ecological requirements. The initial nonlinear model is reformulated into a mixed-integer linear program, which is solved using an adaptation of the Newtons method for problems with integer variables. We characterize an optimal solution and derive cuts to improve the model performance. We illustrate our results using real life landscapes with irregular patches. 
    more » « less
  3. Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S. (Ed.)
    Sensitivity studies have shown that the 15 O(α, γ) 19 Ne reaction is the most important reaction rate uncertainty affecting the shape of light curves from Type I X-ray bursts. This reaction is dominated by the 4.03 MeV resonance in 19 Ne. Previous measurements by our group have shown that this state is populated in the decay sequence of 20 Mg. A single 20 Mg(βp α) 15 O event through the key 15 O(α, γ) 19 Ne resonance yields a characteristic signature: the emission of a proton and alpha particle. To achieve the granularity necessary for the identification of this signature, we have upgraded the Proton Detector of the Gaseous Detector with Germanium Tagging (GADGET) into a time projection chamber to form the GADGET II detection system. GADGET II has been fully constructed, and is entering the testing phase. 
    more » « less
  4. Liu, W.; Wang, Y.; Guo, B.; Tang, X.; Zeng, S. (Ed.)
    15 O( α , γ ) 19 Ne is regarded as one of the most important thermonuclear reactions in type I X-ray bursts. For studying the properties of the key resonance in this reaction using β decay, the existing Proton Detector component of the Gaseous Detector with Germanium Tagging (GADGET) assembly is being upgraded to operate as a time projection chamber (TPC) at FRIB. This upgrade includes the associated hardware as well as software and this paper mainly focusses on the software upgrade. The full detector set up is simulated using the ATTPCROOTv 2 data analysis framework for 20 Mg and 241 Am. 
    more » « less